Universal Generation for Optimality Theory Is PSPACE-Complete
Abstract
This article shows that the universal generation problem for Optimality Theory (OT) is PSPACE-complete. While prior work has shown that universal generation is at least NP-hard and at most EXPSPACE-hard, our results place universal generation in between those two classes, assuming that NP ≠ PSPACE. We additionally show that when the number of constraints is bounded in advance, universal generation is at least NL-hard and at most NPNP-hard. Our proofs rely on a close connection between OT and the intersection non-emptiness problem for finite automata, which is PSPACE-complete in general and NL-complete when the number of automata is bounded. Our analysis shows that constraint interaction is the main contributor to the complexity of OT: The ability to factor transformations into simple, interacting constraints allows OT to furnish compact descriptions of intricate phonological phenomena.